Publication I May 12, 2020

Single-Molecule Sensing of DNA Intercalating Drugs in Water

The occurrence of pharmaceutical residues in surface water is raising environmental concern. To accompany the evolution of measures for natural resources protection, sensing methods enabling sensitive and rapid water quality monitoring are needed. We recently managed the parallelization of the Tethered Particle Motion (TPM), a single molecule technique, sensitive to the conformational changes of DNA. Here, we investigate the capacity of high throughput TPM (htTPM) to detect drugs that intercalate into DNA. As a proof-of-concept we analyze the htTPM signal for two DNA intercalating dyes, namely, YOYO-1 and SYTOX orange. The efficient detection of intercalating drugs is then demonstrated with doxorubicin. We further evaluate the possibility to detect carbamazepine, an antiepileptic massively prescribed and persistent in water, which had been described to interact with DNA through intercalation. Our results corroborated by other techniques show that, in fact, carbamazepine is not a DNA intercalator. The comparison of the results obtained with different aqueous buffers and solutions allows us to identify optimal conditions for the monitoring of intercalation compounds by htTPM.