Introducing pure protein-DNA conjugates


pro
FIRE® is a unique system for protein-DNA conjugate preparation, delivering consistent and superior conjugate quality for your experiments.

smart biophysical analysis


switch
SENSE® instruments
for molecular interaction analysis.

switchSENSE® Technology
Molecular Interaction Analysis
Powered by
Electro-switchable Nanolevers
Unrivaled Information Content

read more >

  • Binding Kinetics
  • Binding Affinity
  • Protein Diameter
  • Conformational Change
  • Nuclease & Polymerase Activity
  • Bispecific Binders & Avidity
  • Melting & Thermodynamics
  • Multimers & Aggregation

Application Areas

Dr. Michael Schraeml, Head Protein and Enzyme Technologies
ROCHE DIAGNOSTICS GMBH

In Focus

Paper in CHEMISTRY 2018

Structural and Kinetic Profiling of Allosteric Modulation of Duplex DNA Induced by DNA‐Binding Polyamide Analogues

Nov. 8th, 2018

A combined structural and quantitative biophysical profile of the DNA binding affinity, kinetics and sequence-selectivity of hairpin polyamide analogues is described. DNA duplexes containing either target polyamide binding sites or mismatch sequences are immobilized on a microelectrode surface. Quantitation of the DNA binding profile of polyamides containing N-terminal 1-alkylimidazole (Im) units exhibit picomolar binding affinities for their target sequences, whereas 5-alkylthiazole (Nt) units are an order of magnitude lower (low nanomolar). Comparative NMR structural analyses of the polyamide series shows that the steric bulk distal to the DNA-binding face of the hairpin iPr-Nt polyamide plays an influential role in the allosteric modulation of the overall DNA duplex structure. This combined kinetic and structural study provides a foundation to develop next-generation hairpin designs where the DNA-binding profile of polyamides is reconciled with their physicochemical properties.

DOWNLOAD PAPER

Paper in LANGMUIR 2018

Assembly and Characterization of a Slingshot DNA Nanostructure for the Analysis of Bivalent and Bispecific Analytes with Biosensors

Oct. 1st, 2018

The characterization of novel therapeutic antibodies with multivalent or multispecific binding sites requires new measurement modalities for biosensors, to discriminate the engagement of antigens via one, two, or even more binding moieties. The presentation of antigens on a sensor surface in a well-controlled spatial arrangement is a prerequisite for the successful interpretation of binding kinetics measurements of multivalent analytes, but the adjustment of defined distances between immobilized ligands is difficult to achieve in state-of-the-art biosensor systems. Here, we introduce a simple DNA nanostructure resembling a slingshot, which can be configured with two identical or two different antigens (bivalent or bispecific), which are spaced at a defined distance. We characterize the slingshot structure with a chip-based biosensor using electrically switchable DNA nanolevers and demonstrate that bivalent and monovalent antibodies selectively interact with slingshots that have been functionalized with two identical or two different antigens, respectively. The dissociation kinetics are quantified in real-time measurements and we show that the slingshot structure enables a clear differentiation between affinity and avidity effects.

DOWNLOAD PAPER

Products for High-Performance Analysis

Biochips

switchSENSE® experiments are performed on reusable multi-electrode, multi-channels biochips.

DRX Instruments

Fully automated switchSENSE® instruments are 96-well plates compatible and manufactured in Germany.

Consumables

Including coupling kits, starter packs, training & OQ kits, as well as buffers, solutions and other consumables.

CONTACT US!
WE WILL GET IN TOUCH WITH YOU SHORTLY.

What are you interested in? *

Consumables & Reagents
Technical Support
Quotes & Orders

Instruments & Applications
Technical & Software Support
Assay Development

New to switchSENSE®
General Info & Evaluation
Purchasing

Dynamic Biosensors Data Privacy Policy

Contact Specialist